

Association EURATOM/HAS

CHALMERS

HIGH-FREQUENCY ELECTROMAGNETIC WAVES DESTABILIZED BY RUNAWAY ELECTRONS IN A NEAR-CRITICAL ELECTRIC FIELD

<u>A. Kómár¹, T. Fülöp², G.I. Pokol¹</u>

- 1) Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM
- 2) Department of Applied Physics, Chalmers University of Technology and Euratom-VR Association

2 April 2012 VI. Hungarian Plasma Physics and Fusion Technology Workshop

Runaway electrons

□ For electric fields higher than the critical field: accelerating force exceeds the friction force \rightarrow *runaway electrons*

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop 2 April 2012

Particle-wave interaction

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop

Distribution function

4/11

normalized momentum

T. Fülöp, PoP 13(062506), 2006

P. Sandquist, PoP 13(072108), 2006

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop

New approximations

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop

Whistler waves

Electron-whistler wave

A. Kómár, BSc thesis, BME TTK, 2011

$$\omega_{ci} << \omega$$
 $\omega_{ce} \sqrt{m_e / m_i} << \omega$

Magnetosonic-whistler wave

T. Fülöp et al., PoP 13(062506), 2006

$$\omega_{ci} << \omega << \omega_{ce}$$

Whistler wave

S. Sazhin, Whistler-mode waves in a hot plasma, Cambridge Univ. Press, 1993

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop

Growth rate in near-critical field

At the energy corresponding to the maximum (10 MeV): no electrons.

$E/E_c = 1.3, B = 2 \text{ T}, n_e = 5 \cdot 10^{19} \text{ m}^{-3}, n_r = 3 \cdot 10^{17} \text{ m}^{-3}$

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop 2 Apri

Most unstable wave

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop 2 Ap

Damping rates of the wave, stability

Damping rates:

Collisional damping: of electron-ion collisions

Convective damping: the runaway beam has a finite radius, L_r

Stability:
 Finding (Growth rate – Damping rates) = 0
 (for the most unstable wave)
 Critical runaway density

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop 2

Stability limit in near-critical field

10/11

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop 2 A

Conclusions

- Runaway electron wave interaction in near-critical electric field
- Extending the previous approximations
 - General resonance condition
 - New whistler approximations
- Linear stability
 - The most unstable wave is an electron-whistler wave, dependent on the maximum runaway energy
 - Stability threshold: higher for higher magnetic field

The results discussed above are supported by the grant TÁMOP-4.2.2/B-10/1-2010-0009.

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop 2 April 2012

General resonance condition

12/11

- Runaway susceptibilities:
 calculated based on the distribution function, $\iint d^3p$
- Implicit resonance:

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop

Why the whistler wave?

13/11

- □ Resonance condition is physical if: $p_{res} > 0$
- In ultrarelativistic approximation:

□ In the general case:

 $k_{\parallel}c - \omega_0(k,\theta) > 0 \quad \text{and} \quad n \le 0$ Whistler wave

A. Kómár - Electromagnetic waves destabilized by runaway electrons Hungarian Plasma Physics and Fusion Technology Workshop