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 For electric fields higher than the critical field: accelerating 
force exceeds the friction force → runaway electrons 

Runaway electrons 
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Particle-wave interaction 

( )δωγ Im=i

Dispersion relation of 
the plasma waves: 

Dielectric tensor 

Perturbative 
analysis 

k: wave number 
ω: wave frequency 
c: speed of light 



Near-critical field 

Distribution function 
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High electric field 

T. Fülöp, PoP 13(062506), 2006 P. Sandquist, PoP 13(072108), 2006 

p = q/mec 
normalized momentum 



General 
resonance condition 

Ultrarelativistic 
resonance condition 

New approximations 
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Magnetosonic-
whistler wave 

Electron-
whistler wave 

High electric field 
distribution function 

Near-critical field 
distribution function 

T. Fülöp, PoP 13(062506), 2006 



Whistler waves 
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 Electron-whistler wave 
A. Kómár, BSc thesis, BME TTK, 2011 

 
 Magnetosonic-whistler wave 

T. Fülöp et al., PoP 13(062506), 2006 

 
 Whistler wave 

S. Sazhin, Whistler-mode waves in a hot plasma, 
Cambridge Univ. Press, 1993 
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Growth rate in near-critical field 
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Electron-whistler wave Magnetosonic-whistler wave 

E/Ec = 1.3, B = 2 T, ne = 5 ∙ 1019 m-3, nr = 3 ∙ 1017 m-3 

At the energy corresponding to the maximum (10 MeV): no electrons. 

γ / ωce γ / ωce 



Most unstable wave 
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most unstable 
wave 

 Maximum runaway energy:         2.6 MeV 

E/Ec = 1.3 

B = 2 T 

ne = 5 ∙ 1019 m-3 

nr = 3 ∙ 1017 m-3 



Damping rates of the wave, stability 
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 Damping rates: 
 Collisional damping: of electron-ion collisions 
 Convective damping: the runaway beam has a finite 

radius, Lr 
 

 Stability: 
Finding (Growth rate – Damping rates) = 0  

(for the most unstable wave) 
      Critical runaway density 

 



Stability limit in near-critical field 

2 April 2012 
A. Kómár - Electromagnetic waves destabilized by runaway electrons 

Hungarian Plasma Physics and Fusion Technology Workshop 

10/11 

Unstable 

Stable ne = 5·1019 m-3 

ne = 1020 m-3 



 Runaway electron – wave interaction in near-critical electric 
field 

 Extending the previous approximations 
 General resonance condition 

 New whistler approximations 

 Linear stability 
 The most unstable wave is an electron-whistler wave, dependent on the 

maximum runaway energy 

 Stability threshold: higher for higher magnetic field 
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Conclusions 



General resonance condition 
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 Runaway susceptibilities: 
calculated based on the distribution function, ∫∫∫d3p 

 Implicit resonance: 
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Why the whistler wave? 
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 Resonance condition is physical if: 
 In ultrarelativistic approximation: 

 
 
 

 In the general case: 
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