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Abstract. The velocity-space anisotropy of suprathermal electron distributions is a source of
free energy that may destabilize plasma waves through a resonant interaction between the waves
and the energetic electrons. In this work we use a suprathermal electron distribution appropriate
for the case when the accelerating electric field is near-critical and we investigate the frequencies,
wave numbers and propagation angles of the most unstable waves using a general dispersion
relation. It is shown that if the electric field is sub-critical, the anisotropy is not enough to
drive electromagnetic waves unstable, as the Landau damping of the waves overwhelms the
drive through the anomalous Doppler resonance. In the case when the electric field is super-
critical, two types of electromagnetic waves will be destabilized, the electron-whistler and the
extraordinary electron wave. The number of electrons for destabilization of the latter is several
orders of magnitude lower than for the electron-whistler wave. Consequently, the threshold for
destabilization of the extraordinary electron wave is much lower.

1. Introduction
Magnetically confined plasmas often have suprathermal electron populations accelerated by
electric fields induced in magnetic reconnection. If the electric field is larger than a certain
critical field (Ec), the accelerating force overwhelms the friction for high energy electrons, and
these electrons can run away. In tokamak disruptions, the electric field is often well above the
critical field and these fields can accelerate electrons to relativistic energies and may generate
a runaway electron current exceeding 1 MA. During normal operation the electric field is not
as high as in a disruption, but it may nevertheless transiently exceed the critical field and
accelerate electrons. There are several experimental observations that suprathermal electrons
are produced during the sudden plasma cooling at magnetic reconnection events in sawtooth
crashes [1, 2]. Estimates show that in these cases the electric field induced by the sawtooth
crash is much larger than the critical one, and generates a suprathermal electron distribution.
The steady-state on-axis electric field is close to the critical in these cases and this prevents a
deceleration of the electrons between the sawtooth crashes.

The distribution of the suprathermal electrons has an anisotropy in velocity space and through
this, they may drive electromagnetic waves unstable via a resonant interaction, not only when
the electric field is far above the critical [3, 4, 5] but also in the near-critical case [6, 7]. In
this work we generalize and extend the formalism describing the wave-particle interaction in the



near-critical case by using a general dispersion relation and investigating also a case when the
electric field is close to critical but is not quite as large as that (subcritical case).

2. Suprathermal distribution function in the subcritical case
In recent work [8], analytical expressions have been derived for the electron distribution
function in plasmas where the electric field is close to critical, α ∼ 1, where α = E/Ec =
4πϵ20mec

2E/nee
3 lnΛ. Here, ne is the thermal electron density, me is the electron rest mass, e

is the electron charge, lnΛ is the Coulomb logarithm, ϵ0 is the dielectric constant and c is the
speed of light. The distribution function of the suprathermal electrons in the slightly subcritical
case (α <∼ 1) is obtained by matching solutions of the Fokker-Planck equation in different regions
of momentum space and can be written as

fIII = expF = exp
(
ϵ−1F (0) + ϵ−1/2F (1) + F (2) + ...+ CIII

)
, (1)

where ϵ = Ec/ED ≪ 1, ED is the Dreicer field, F (0), F (1), F (2) are given by Eqs. (23), (37)-(38)
and the normalization constant CIII is defined by Eqs. (39) and (9) of Ref. [8]. Figure 1a shows
a contour-plot of this distribution for α = 0.9. The distribution is only slightly anisotropic,
which is to be expected because of the subcritical value of the electric field.

Figure 1. (a) Suprathermal electron distribution for α = 0.9, plotted with respect to the
parallel and perpendicular momentum normalized to mec. (b) Growth rate (103γi/ωce) of the
electron-whistler wave for suprathermal electrons, sum of the anomalous-Doppler and Cherenkov
resonances. The parameters are α = 0.9, Z = 1 effective ion charge, ne = 5 · 1019 m−3 thermal
electron density and B = 2 T magnetic field.

It should be noted that the fIII suprathermal distribution function is only valid for normalized
relativistic momenta p = γv/c ∼ O(1).

Using this electron distribution we can calculate the linear growth rates for the high-frequency
electromagnetic waves through a perturbative analysis similar to the one presented in [7].
Using the electromagnetic approximation, ϵe+i

33 ≫ k∥k⊥c
2/ω2, leads to the dispersion relation

(ϵ11 − k2∥c
2/ω2)(ϵ22 − k2c2/ω2) + ϵ212 = 0, where ω is the wave frequency, k is the wave number,

where the ∥ index denotes its component parallel to the static magnetic field and ϵ is the



dielectric tensor of the plasma, consisting of the susceptibilities of the different plasma species:
ϵ = 1 + χi + χe + χr, the indices i, e and r denoting the ion, thermal electron and runaway
population. Throughout this work we used the cold plasma approximation for the ion and
thermal electron susceptibilities [9] which was seen to be accurate for temperatures up to 20 keV
[7]. The dispersion relation can be further simplified using the approximation ω ≫ ωce

√
me/mi,

for which the dielectric tensor is ϵe+i
11 = 1 − ω2

pe/(ω
2 − ω2

ce), ϵe+i
22 = 1 − ω2

pe/(ω
2 − ω2

ce),

ϵe+i
12 = −iω2

peωce/[ω(ω
2−ω2

ce)], where ωpe is the electron plasma- and ωce is the electron cyclotron
frequency. This dispersion defines three different electromagnetic waves, of which it was shown
that if α >∼ 1 the lowest frequency branch, the so-called ‘electron-whistler wave’, was most
unstable.

Figure 1b shows that the linear growth rates excited by suprathermal electrons with the
distribution (1) (valid for α <∼ 1) are negative on the whole wave number and propagation angle
plane, where θ = k∥/k. This was somewhat unexpected, as it was shown in [6, 7] that for runaway
electrons in a slightly higher electric field (near-critical case with α >∼ 1) the corresponding
growth rates are positive. The only part of the calculation different from the α >∼ 1 case was the
distribution function, which appears only in the anisotropy term of the runaway susceptibilities:
A ≡ nωce∂f/∂p⊥ + kc cos θ p⊥∂f/∂p∥. In the case of α >∼ 1, this term was positive for both
n = 0 (Cherenkov resonance) and n = −1 (anomalous-Doppler resonance), while in the α <∼ 1
case, the term is negative for n = 0 and positive for n = −1. The anomalous-Doppler term is
negligible compared to the negative growth rate due to the Cherenkov resonance and therefore
the waves in the subcritical case are stable.

3. Runaway distribution function
As we have established that the suprathermal populations that are formed in a sub-critical case
are stable, we now turn our attention to the runaway distribution, the expression for which is
also given in Ref. [8] as

fr(p∥, p⊥) =
A

p
(Cs−2)/(α−1)
∥

exp

(
− (α+ 1)p2⊥
2(1 + Z)p∥

)
1F1

(
1− Cs

α+ 1
, 1;

(α+ 1)p2⊥
2(1 + Z)p∥

)
, (2)

where Cs = α − (1+Z)
4 (α − 2)

√
α

α−1 , Z is the effective ion charge, 1F1 is the confluent

hypergeometric (Kummer) function and A is a normalization constant. Because of the
continuous acceleration of electrons due to the constant electric field more and more electrons
will run away, thus the integral of the distribution is divergent. However, in reality the electric
field is constant only for a finite time, then drops. Therefore, the number of runaway electrons
and their maximum energy will have an upper limit they can possibly reach. The value of this
limit, pmax depends on the exact value and time evolution of the accelerating field. In this paper
we will use pmax = 5 corresponding to the maximum energy 2.6 MeV.

The distribution is positive on all of the momentum space only if the first argument of

1F1 is positive: Cs < α + 1. Furthermore, the condition fr → 0 for p∥ → ∞ requires that
Cs > 2. This distribution was used in [6, 7] to study the destabilization of the electron-whistler
and magnetosonic-whistler waves. However, if the electromagnetic approximation breaks down,
other waves may be driven unstable. In the following we will use the full dispersion relation to
study the interaction of runaway electrons with the electromagnetic waves.

4. Wave dispersion
The full dispersion relation is the following:[(

ϵ11 −
k2∥c

2

ω2

)(
ϵ22 −

k2c2

ω2

)
+ ϵ212

](
ϵ33 −

k2⊥c
2

ω2

)
−

k2∥k
2
⊥c

4

ω4

(
ϵ22 −

k2c2

ω2

)
= 0. (3)



In order to proceed with the calculation of the growth rate we rewrite this disper-
sion relation, by substituting the formulas for the dielectric tensor elements, and ar-

rive at: ω8 − ω6
(
2k2c2 + ω2

ce + 3ω2
pe

)
+ ω4

[
k4c4 + 2k2c2(ω2

ce + 2ω2
pe) + ω2

pe(ω
2
ce + 3ω2

pe)
]
−

ω2
[
k4c4(ω2

ce + ω2
pe) + k2c2ω2

pe(3/2ω
2
ce + 2ω2

pe + 1/2ω2
ce cos 2θ) + ω6

pe

]
= −1/2k4c4ω2

ceω
2
pe(1 +

cos 2θ). This dispersion gives four different branches of electromagnetic waves, three of which
have already been studied in Refs. [6, 7] and one new branch. These are plotted on Fig. 2, where
the lowest frequency branch is the previously named ‘electron-whistler wave’, and the second
lowest is the new branch, which we will call ‘extraordinary electron wave’, as this is described
in Ref. [9] as a high-frequency extraordinary wave.

Figure 2. Wave dispersion of the electromagnetic waves at θ = 5 degrees propagation angle
for (a) B = 2 T and (b) B = 5 T. The thermal electron density is ne = 5 · 1019 m−3. The solid
blue line corresponds to the electron-whistler wave and the red dashed line is the extraordinary
electron wave. The branches with higher frequencies are not destabilized by the suprathermal
electrons.

In the presence of runaway electrons, the linear growth rate of the waves can be calculated by
perturbing the dispersion with the runaway susceptibility. This results in an additional δω term
in the wave frequency, the imaginary part of which is the linear growth rate γi. The growth rate
is then given by

γi
ω6 (ω2 − ω2

ce)
= ℑ

{
−χ11

(
ϵ11 − k2c2/ω2

) (
ϵ33 − k2⊥c

2/ω2
)
− 2χ12ϵ12

(
ϵ33 − k2⊥c

2/ω2
)
−

χ22

[(
ϵ11 − k2∥c

2/ω2
) (

ϵ33 − k2⊥c
2/ω2

)
− k2∥k

2
⊥c

4/ω4
]
−

χ33

[
ϵ211 − ϵ11

(
k2c2/ω2 + k2∥c

2/ω2
)
+ k2k2∥c

4/ω4 + ϵ212

]}
/P (ω, k, θ), (4)

where P (ω, k, θ) = 8ω7−6ω5
(
2k2c2 + ω2

ce + 3ω2
pe

)
+4ω3

[
k4c4 + 2k2c2(ω2

ce + 2ω2
pe) + ω2

pe(ω
2
ce + 3ω2

pe)
]
−

2ω
[
k4c4(ω2

ce + ω2
pe) + k2c2ω2

pe(3/2ω
2
ce + 2ω2

pe + 1/2ω2
ce cos 2θ) + ω6

pe

]
.

The growth rates of the two highest frequency branches were already discussed in Ref. [7] and
it has been concluded that these cannot be destabilized by the runaway population. Thus we
turn our attention to the remaining two branches, the electron-whistler and the extraordinary
electron wave.

The growth rate of the electron-whistler wave is plotted on Fig. 3 for two different magnetic
fields. These growth rates do not differ much from the growth rate calculated with the simplified
dispersion [6, 7], neither qualitatively nor quantitatively for B = 2 T, but as we will show later



the parameters and growth rate of the most unstable wave differ for magnetic fields larger than
B >∼ 2.5 T. The parameters of the most unstable wave are determined by the maximum energy
of the runaway electrons [7]. In Fig. 3 this quantity is chosen to be 2.6 MeV, corresponding
to pmax = 5, and the corresponding k − θ curve is plotted with a white dotted line on Fig. 3a,
while it corresponds to such high wave numbers for B = 5 T that it cannot be seen on Fig. 3b.
By decreasing the maximum energy, the wave number of the most unstable wave increases
while its propagation angle decreases, resulting in the increasing frequency of the most unstable
electron-whistler wave [7].

Figure 3. Growth rates (102γi/ωce) for the electron-whistler wave with the full dispersion
(contour lines) and the k− θ values corresponding to pmax = 5 (white dotted line). Growth rate
(a) for B = 2 T, (b) for B = 5 T magnetic field, sum of the anomalous-Doppler and Cherenkov
resonances. The parameters are α = 1.3, Z = 1, ne = 5 · 1019 m−3, nr = 3 · 1017 m−3 runaway
density and pmax = 5.

By comparing the growth rate of the electron-whistler wave in the near-critical case to
the growth rate of the magnetosonic-whistler wave in the high electric field case previously
investigated [3, 4, 5] we can conclude that the growth rates are qualitatively similar in the two
cases, having a maximum at low wave numbers and near-perpendicular propagation. For a high
enough pmax this maximum of the growth rate would define the most unstable wave even in
the near-critical case. Based on this and the qualitatively similar runaway distributions in the
two cases, a smooth transition can be envisioned in between, for arbitrary electric fields. The
quasilinear evolution of the whistler wave has already been investigated for high electric fields
in Ref. [4] and it was found that the destabilization of the whistler wave led to the scattering
of the runaway electrons in velocity space. Due to the similarities in the two cases, we expect
that the effect of this interaction would be similar in the near-critical case, in the sense that a
scattering of the runaway electrons would occur, while this effect would possibly be slower and
less dominant.

The extraordinary electron wave can be destabilized only in a limited region of the k − θ
parameter space and has a positive growth rate in this region, see Fig. 4. As in the case
of the electron-whistler, the most unstable wave is determined by the maximum runaway
energy, however, there is a difference in the two cases. While the electron-whistler wave can be
destabilized on the whole k − θ parameter space, thus by runaways with arbitrary maximum



Figure 4. Growth rates (102γi/ωce) for the extraordinary-electron wave with the full dispersion
(contour lines) and the k−θ values corresponding to pmax = 5 (white dotted lines). Growth rate
(a) for B = 2 T, (b) for B = 5 T magnetic field, sum of the anomalous Doppler and Cherenkov
resonances. The parameters are α = 1.3, Z = 1, ne = 5 · 1019 m−3, nr = 3 · 1017 m−3 and
pmax = 5.

energy, the extraordinary electron wave cannot be destabilized by runaways with energies higher
than 2.6 MeV for the parameters in the figure caption (for B = 2 T). This is due to the
restriction posed on the growth rate by the resonance condition: in order to have a real and
positive resonant momentum certain limitations apply for the wave dispersion [7].

If we compare the growth rates of the electron-whistler and the extraordinary electron wave,
we can conclude that for pmax = 5 the most unstable extraordinary electron wave has a growth
rate an order of magnitude higher than the electron-whistler wave.

5. Stability
By comparing the instability growth rate of the electron-whistler wave and the extraordinary
electron wave to the various damping rates, we can determine a stability threshold for the
destabilization of these waves. By taking into account collisional (γd) and convective damping
(γv), a wave is unstable if γl = γi − γd − γv > 0. Collisional damping equals to γd = 1.5τ−1

ei [10],

where τei = 3π3/2m2
e0v

3
Teϵ

2
0/niZ

2e4 lnΛ is the electron-ion collision time. This is the dominant
damping mechanism in cold plasmas. The convective damping term takes into account the effect
that wave energy is transported out of the runaway beam with the group velocity ∂ω/∂k⊥, and
equals to γv ≡ (∂ω/∂k⊥)/(4Lr), where Lr is the radius of the runaway beam [5].

The growth rates of the most unstable waves driven by a near-critical electron distribution
with pmax = 5 were compared to the collisional and convective damping rates for Te = 20 eV
post-disruption electron temperature and for Te = 1 keV temperature, and the obtained stability
thresholds are shown in Fig. 5. If the runaway density is higher than the critical values plotted
in Fig. 5, the corresponding wave is destabilized.

Fig. 5a shows the critical runaway densities for the destabilization of the electron-whistler
wave. By comparing this to the stability thresholds calculated in Refs. [6, 7] with the simplified
dispersion, it can be seen that the two cases differ both quantitatively and qualitatively for high
magnetic fields. In Fig. 5a, the stability threshold decreases for increasing magnetic field for



values higher than 3.5 T.

Figure 5. Stability thresholds in near-critical electric field. (a) Thresholds for the most unstable
electron-whistler wave, (b) for the most unstable extraordinary electron wave as a function of
the magnetic field. The electron temperatures are Te = 20 eV (blue thin lines) and Te = 1 keV
(red thick lines). The runaway-beam radius is Lr = 0.1 m (dashed), Lr = 0.2 m (solid) and
Lr = 0.4 m (dotted). The other parameters are α = 1.3, Z = 1, ne = 1020 m−3 and maximum
runaway energy of 2.6 MeV, corresponding to pmax = 5.

On Fig. 6 the parameters and growth rate of the most unstable electron-whistler wave are
shown for the (3) full dispersion and the simplified dispersion given in Section 2, as well as the
convective damping of these waves. It can be seen that for higher magnetic fields these start to
differ, and the most dominant effect behind the decrease in the stability threshold in Fig. 5a is
that the growth rate of the wave (given by (3), the full dispersion relation) increases. This is
due to two facts: (1) the parameters of the most unstable wave are different for high magnetic
fields, while they are the same for low magnetic fields (see Fig. 6ab), and (2) the growth rate of
the full dispersion increases faster with the magnetic field than the growth rate of the simplified
dispersion.

On Fig. 5b stability thresholds are shown for the extraordinary electron wave. The critical
density needed to destabilize this wave increases with the magnetic field. For 1 keV background
temperature, the increase in the critical density suffers a break around 2.5 T, which is due to
the corresponding break in the convective damping of the most unstable wave (see the dash-
dotted line in Fig. 6d). This jump in the critical density becomes more dominant with increasing
temperature, while it disappears at low temperatures, see the lines corresponding to 20 eV in
Fig. 5b. By comparing the order of magnitude of the critical densities for the extraordinary
electron wave to that of the electron-whistler, we can conclude that the extraordinary electron
wave is more likely to be destabilized, as it has several order of magnitudes lower critical density.

6. Conclusions
Our results show that if the electric field is sub-critical, suprathermal electrons do not destabilize
electromagnetic waves. In contrast, if the electric field is super-critical, both the electron-
whistler wave and the extraordinary electron wave are destabilized. The extraordinary electron
wave is a new branch, which is only present if the electromagnetic approximation is relaxed
and the general wave dispersion is used. The wave number and propagation angle of the most
unstable extraordinary electron wave is very different from its electron-whistler counterpart. It
propagates almost parallel to the magnetic field if B <∼ 2.5T . Above B ≃ 2.5T , the propagating
angle becomes larger and this leads to a considerable increase in the convective damping. The
extraordinary electron wave is much easier to destabilize than the electron-whistler branch.



Figure 6. Parameters, growth rate and convective damping of the most unstable electron-
whistler and extraordinary electron wave. (a,b) Parameters of the most unstable wave. (c,d)
Growth rate and convective damping for the most unstable wave. The parameters are α = 1.3,
Z = 1, ne = 1020 m−3, nr = 3 · 1017 m−3, pmax = 5 and Lr = 0.1 m.

Interestingly, the stability threshold of the extraordinary electron wave exhibits a clear threshold
at Btr ≃ 2.5 T if the electron temperature is higher than 500 eV. Considerably fewer electrons
are needed for destabilization of this wave below Btr than above. Destabilization of this wave
is expected to lead to pitch-angle scattering of the runaway electron beam and therefore may
be part of the reason for the observed magnetic field threshold for runaway beam formation in
large tokamaks [11, 12].
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