Advanced Dynamic Window based Navigation
Approach using Model Predictive Control

Domokos Kiss and Gébor Tevesz
Department of Automation and Applied Informatics,
Budapest University of Technology and Economics,

H-1117 Budapest, Magyar Tuddsok korttja 2., Hungary

{domokos.kiss, tevesz}@aut.bme.hu

Abstract—A well-known reactive motion planning tech-
nique, the dynamic window approach (DWA) provides an
elegant way to navigate safely in the presence of obstacles,
also taking dynamic properties of the robot into account. Most
of the DWA-based methods have the same limitation, namely
they use an objective function consisting of weighted terms.
Different situations require different weights, however, there is
no algorithm for choosing them. This paper presents a global
dynamic window-based method for motion planning using
model predictive control and having no weighted objective
function. Former DWA-based methods take dynamic limita-
tions of the robot by acceleration constraints into account. In
contrast with that, the proposed approach utilizes a dynamic
motion model of the robot.

I. INTRODUCTION

This paper focuses on the motion planning of a mobile
robot moving in the plane, in the case of such obstacle
distributions where narrow crossings are unavoidable. The
majority of planning approaches consider the robot as a
single point or assume that it is circular. If there are wide
free areas between the robot and its target, the bounding
circle is a good approximation but in many cases it is too
large to pass through narrowings.

An elegant real-time planning strategy, the dynamic win-
dow approach (DWA) is proposed in [1]. Some extensions
of this approach have also been published in the past years.
These methods take the dynamic behavior of the robot into
account by acceleration bounds and in most cases the vehi-
cle shape is not taken into account. The contribution of this
paper is a global dynamic window-based navigation method,
considering the dynamic model of the robot and vehicle
shape as well. The proposed method can be considered
as a feedback motion planning approach [2]. This means
that planning and execution are not separate stages. The
planning result is a sequence of motion commands, which
are generated in such a consecutive way that the motion
can be executed on-line during planning. This property is
useful because unexpected changes in the robot state or
in the environment can be handled. However, environment
changes cause other complications, hence we assume a
static environment in this paper for simplicity.

The paper is organized as follows. In Section II, we
take a short survey of dynamic window-based navigation
approaches and summarize the contribution of the presented
approach. In Section III the robot models are introduced the
method can be applied to. In Section IV, it is shown how
the shape of the robot is taken into account. Section V is
about the navigation function that plays an important role in

the proposed method. In Section VI, we describe the model
predictive algorithm and in Section VII we investigate the
applicability to different robot kinematics. Section VIII
summarizes the paper and gives directions of future work.

II. DYNAMIC WINDOW BASED NAVIGATION METHODS

The dynamic window approach of robot navigation [1]
differs from former approaches — which use potential fields
and virtual forces [3], [4] — in that it assumes a velocity
motion model for robots, i.e. velocities are considered
as actuating variables. It deals with robots having non-
holonolmic kinematic constraints, whose trajectories can be
approximated by a sequence of circular arcs. A circular
path segment can be characterized by a velocity pair (v,w)
which consists of the translational velocity v and the angular
velocity w of the robot. This approach takes the dynamics
of the robot into account by reducing the search space to
velocities reachable in a short time interval. This subset of
the velocity space is called the dynamic window. In addition,
only those velocities are considered that are safe with
respect to obstacles (admissible velocities). To choose from
the set of admissible velocities an objective function is eval-
uated and maximized. This objective function is a weighted
sum of three terms: heading(v,w), which is a measure of
going into the direction of the goal, dist(v,w), which is the
smallest distance to the next obstacle along the circular path
segment belonging to (v,w) and velocity(v,w), simply the
projection of (v,w) on the translational velocity v (to favor
high motion speeds).

Experimental results presented in [1] show that the dy-
namic window approach to collision avoidance yields a fast
and safe robot motion. However, since the DWA and the
above mentioned other methods are based on local decisions
without taking connectivity information of free space into
account, the robot can get trapped in local minima situations
(i.e. it can stop far from the goal point) or enter a limit-cycle
that prevents reaching the goal. Another problem of the
DWA is that different situations require different weighting
of the objective function terms to ensure successful motion
but there is no algorithm for choosing the weights.

A modified approach, called the Global DWA [5] extends
the original method to the case of holonomic robots and
addresses the problem of local minima by taking free space
connectivity information into account. This is obtained by
introducing a navigation function (NF), which is a local
minima-free function defined on the discretized configura-
tion space, having a unique minimum at the goal. New terms

are added to the objective function to favor NF descent
along the robot path.

The problem of local minima is eliminated in many cases
through the global distance information represented by the
NF terms, but not at all times. It is shown in [6] that limit-
cycles can evolve if the velocity term outweighs the NF
terms. They reformulate the dynamic window approach as a
model predictive control (MPC) problem (also referred to as
receding horizon control, RHC). They assume a holonomic
robot model and choose acceleration as control signal. It is
shown that for a given set of controls the system is stable
in the Lyapunov sense (but not asymptotically). However,
this property is not enough to ensure convergence, since the
case of zero velocity far from the goal cannot be excluded.
This is prevented by a timeout condition in their proposed
algorithm.

Another improvement of the original DWA is presented
in [7], called [-DWA. This variant adds convergence im-
provements to the original method by pre-calculating an
ideal control action that would make the robot converge to
the goal if no obstacles were present. The objective function
is similar to the one in [1] and favors control actions close
to the ideal ones. Because no global information about
obstacles is taken into account, the convergence is actually
not ensured.

The above mentioned approaches have the same property
of assuming a point-like or circle-shaped robot. A circle-
shaped robot can also be reduced to a point if the obstacles
are dilated by the robot radius. This is on one hand a very
effective and simple assumption if the robot actually has
a circular shape or the bounding circle can be used for
representing the robot in the collision detection phase of
the algorithm. On the other hand, if the shape considerably
differs from a circle and there are narrow passages between
obstacles, this assumption fails and the algorithms report
that no collision-free path exists.

To overcome this limitation, some approaches were also
proposed that take the vehicle shape into account. In [8]
robot shape is handled by using precalculated lookup tables
that contain local data about collision risk depending on the
current velocity and obstacle configuration. This approach
is memory intensive but a real-time local obstacle avoidance
can be obtained. The approach in [9] solves the task
analytically for polygonal robots without the use of lookup
tables. These two approaches assume that obstacles are
represented by points (e.g. obtained by laser range sensors).
This representation is efficient only in the case of local
navigation taking only the neighborhood of the robot into
consideration, because in a global case too many obstacle
points would have to be stored and handled. The method
presented in [10] uses the same obstacle model. Unlike
others, it delivers an elegant and analytical solution by
“wrapping” former existing obstacle avoidance approaches
(e.g. potential field methods) in a framework that allows
consideration of robot shape and kinematic and dynamic
constraints, while it still has the limitation of locality.
Since only local methods can be “wrapped”, their inherent
convergence problems are not solved.

The authors of the present paper have also proposed
a DWA-based approach for mobile robot navigation, the

Global Dynamic Window Approach using Receding Hori-
zon Control (GDWA/RHC) [11]. It works in velocity space
and assumes a non-holonomic and circular robot model,
similar to [1] and [7]. Global information is taken into
account by a local-minima-free navigation function which
serves as a basis for optimization. The objective function
has no weighted terms and the control law looks like as
follows:

u(-) =argminNF (r,(t + T),7,(t +T)) (D
u(-)
where NF : R? — R is the navigation function defined on
the configuration space of the robot, 7, (¢t + T') and r,(t +
T) are the predicted robot position coordinates at the end
of a time horizon, which can be derived from the motion
equation of the robot.

The contribution of this paper is an improved version
of the GDWA/RHC method. The former method, presented
in [11], assumed circular shape and considered dynamics
as acceleration bounds. The method presented here can be
applied to polygonal robot models. In addition to that, the
outputs of the planning process (i.e. the actuating variables)
are wheel traction forces instead of velocities. As mentioned
above, vehicle shape, kinematics and dynamics have already
been considered in [10] as well, but the framework pre-
sented there can only be applied to local planning tech-
niques having the common disadvantage of being sensitive
to cyclical motions and trap situations. These situations are
avoided in our method using a global navigation function
similar to the one in [11]. The configuration space and
the navigation function in this paper are extended to three
dimensions in order to incorporate the robot orientation
in the optimization process. This advanced method can be
applied to robot models with different kinematics. In case
of kinematic constraints (e.g. differential drive) a prescribed
target position can be reached. This is similar to [10]
and [11] but for polygonal robot models and avoiding trap
situations at the same time. For robots without kinematic
constraints the result is even better: a prescribed position
and orientation can be reached while still considering the
shape and dynamics of the robot.

III. ROBOT MODELS

Before going into details of the navigation approach, we
present the robot models the method can be applied to. If
considering only planar motion, the position and orientation
of a robot in the global coordinate system (also referred to
as configuration q) can be described by three independent
coordinates q = [z,y,p]T. Two models are considered,
which can be derived from a common general model (see
Fig. 1). On one hand, we look at a holonomic model
having three omnidirectional wheels, on the other hand we
investigate differential drive which has a non-holonomic
wheel arrangement. Holonomic robots have at least as many
degrees of freedom (e.g. number of independently driven
wheels) as the dimension of q, in other words they are fully
actuated. In contrast with that, non-holonomic robots are
under-actuated, since they have less degrees of freedom than
it would be necessary to control all position and orientation
coordinates independently.

X
y
A %,
F,
0,=7/3
Ve 0 ¥,
8,=n 0,=51/3
-
F,
» X
(b)
y
A x,
Ve
0,=m/2
F, [0)
NN .
0,=3m/2 ?
» X

©

Fig. 1: Robot models. (a) General wheel arrangement, (b)
3-wheeled symmetric omnidirectional drive, (c) Differential
drive

A. Omnidirectional drive

Omnidirectional wheels are built in such a way that they
provide traction in the direction normal to the motor axis
while they can slide frictionless in the motor axis direction,
thanks to small rollers along the perimeter of the wheel.
A general omnidirectional robot model having n wheels is
depicted in Fig. 1a. The angles 61, 0s,...,0,, of the motor
axes are given relative to the z-axis of the robot coordinate
frame. Each motor provides a traction force vector F;
which is the torque of the motor multiplied by the wheel
radius. Note that in a real robot also damping and friction
forces arise but these are omitted here for simplicity. The
wheel traction forces add up to a translational force and
a rotational torque that move the robot. The relationship
between wheel traction forces and robot acceleration is

derived in [12]:

R . . . S
Qg 1 —ginf#; —sinfy--- —sinb, f
Ray = — | cosf; cosby --- cos, , @)
T T T
In
which can be written as
Ra=C - f, 3)

where T, and Ray are the translational acceleration coor-
dinates of the robot reference point expressed in the robot
coordinate frame, w is the angular acceleration of the robot,
f = [fhfg,...,fn]T is the vector consisting of wheel
traction force magnitudes (f; = |F;|). The magnitudes
can be positive or negative, depending on the direction of
rotation of the motor. The positive directions are shown in
Fig. 1a. M denotes the mass, I the moment of inertia of the
robot related to the vertical axis through the robot reference
point, which is assumed to be the same as the center of
mass. The distance of wheels from the robot reference point
is denoted by r. C is called the force coupling matrix.
Note that it is assumed that no wheel slippage occurs. The
acceleration vector can be expressed in world coordinates
as well:

a=R(p)-"a=R(p)-C-f,)

where a = [a,, a,,@]" = § and R(y) is a rotation matrix
depending on the actual robot orientation:

cosp —sing 0
R(p)=| sing cose 0 5)
0 0 1

We will write R(¢) as R in the sequel, but still keeping in
mind that it depends on the actual orientation.

Our goal is to control the robot to a given goal config-
uration q, and to let it stop there, i.e. ¢ = 0. For that
reason we choose the state vector of the system to x =

7 717 T . T
[q ,q } = [xvyvﬁpavzyvy’w} , where q = [Umvvyaw]
denotes the velocity vector of the robot. The control vector
is u = f because our actuating variables are the motor
torques. The state equation has the following form:

0 I 0
X = . 6
X {OO}X—F{RC]U ©6)
As it will be shown later, we need to solve this equation
in the prediction stage of the navigation algorithm. In order
to obtain a computationally tractable iterative solution, we
assume discrete time and use the following approximation:

1

).(~ i (Xt—&-TS — Xt) s (7)

where T denotes the sampling period, x; the current and
x¢4+7, the next state. After realigning (6) using (7) we get
the state transition equation

I T.1 0
X¢4T, = { 0 I :|Xt + T { R,C] uy, (8)

where Ry is a short form of R(¢p;).
To obtain a fully actuated robot at least three omnidirec-
tional wheels are needed. A reasonable wheel distribution

is shown in Fig. 1b, where the angles of motor axes are
chosen to 1 = /3, 65 = 7 and 63 = 57/3. In this case
the force coupling matrix is

- 0
1

C:M

®)

N‘E« = ‘

S mg
w

ol

Mr

B. Differential drive

Differential drive can be considered as a special case
of the general wheel arrangement with n = 2 and motor
axis angles 6 = w/2 and 02 = 37/2 (see Fig. lc).
In this arrangement the wheel traction forces are parallel
with the z-axis of the robot coordinate frame, hence it
is impossible to obtain a y-directed acceleration using the
actuating forces. This can be seen after substituting 6,
and 0, into (2):

Rq -1 1
Rg, |==—1 0 0 { ! } . 10
I I

Note that on differentially driven robots regular wheels
are used without rollers on their perimeter. This means on
the one hand that the robot cannot slide sideways frictionless
(if we assume no wheel slippage). On the other hand, a y-
directed acceleration can exist thanks to static friction. In
case of curved motion this friction force is responsible for
the centripetal acceleration, which is always parallel with
the y-axis of the robot reference frame. It can be seen that
this robot model is under-actuated because it has only two
degrees of freedom (dimension of f) thus the three variables
of position and orientation cannot be independent. The
dependency can be characterized by the above mentioned
kinematic constraint regarding the y-directed acceleration:

Y

Note that this constraint is equivalent with the fact that the
instantaneous velocity of the robot is always parallel with
the x-axis of the robot coordinate frame. In order to obtain
the motion equation of differential drive, this constraint has
to be added to (10):

R _ . _R
ay = Ac = "TVzW.

R, 0 L[t f
Bay | = | Pow | +—| 0 0 [1]. (12)
o 0 M| aeae | LS

I I

Let us write this as

Fa=Q - Fv4+C-f, (13)

T, .
where fv = [Fu,, Bo, w]” is the vector of instantaneous

robot velocities and

0 00
Q=|w 0 0 (14)
0 0 0
Let (13) be expressed in world coordinates:
a=R-fa=
=RQ-Bv4+RC-f= (15)

=ROR” - v+RC-f

&y

R(q,)

Fig. 2: Polygonal robot and obstacles. O = O; U Oy
is the obstacle region, R(qs) is the robot in the initial
configuration, R(qc) is the robot in the goal configuration.

Using this, the state equation of the system becomes

X = 0 I X+ 0
~ |0 RORT RC |
and after applying the discrete-time approximation the fol-
lowing state transition equation is obtained:

(16)

I T.I N
Xt+Ts 0 I+ TSRtQtR? Xt
T {R?C} w, a7

where R; and €2; stand for R(p;) and €2(w;), respectively.

IV. CONFIGURATION SPACE

In order to be able to take the shape of the robot into
account, the navigation problem is transformed into the
configuration space (also referred to as C-space). We recall
some considerations regarding the C-space of a planar robot
with polygonal shape from [2]. The configuration space C
of a 2-dimensional robot that can translate and rotate in the
workspace W = R? is the manifold R? x S!. The obstacle
region @ C W and the robot R C W are given by a
polygonal model (an example is depicted in Fig. 2). The
configuration space obstacle region C,p,s C C is defined as

Cobs:{qeclR(q)mO#@} (18)

which consists of all configurations q for which the trans-
formed robot R(q) is in collision with the obstacle re-
gion O.

An algorithm for collision detection of convex polygonal
shapes is described in [2, pp. 164-166]. In the case of
nonconvex obstacle and robot shapes these can be consid-
ered as the union of their convex parts. A useful method
for minimal convex decomposition of simple polygons is
proposed in [13].

To obtain an explicit model of C,,s, we discretize the
configuration space with resolutions k,, k, and &, which
are positive integers. Let

Aql = [xmam/kzy Ou O]T
Agz =0, Ymas/ky, 0 (19)
Aq?) = [07 07 ﬂ-/ktp}T

and let a grid point q’ be expressed as

d'(i,j,k) = iAqi + jAq2 + kAqs, (20)

where ¢ € {0,...,k;}, 5 € {0,...,k,} and k €
{—kg,...,k,}. Every grid point q'(¢,j,k) is tested for
collision and the C-space obstacle region is redefined as

Cobs =fa € C|R(f(a))NO # 0}, @2n

where f(q) is a function that returns the grid point
d'(4, 7, k) that lies closest to q. The indices i, j and k of
the closest grid point are determined as follows:

i = |z ky/Tmas +0.5],
k=g -ky/m+0.5].

(22)

where |...| denotes the integer part of a real number. Using
this definition, the C-space obstacle region is built up of
small “bricks” located at the occupied grid points.

This representation allows the motion planning problem
of a planar polygonal robot to be expressed as a planning
problem of a single translating point in the (3-dimensional)
configuration space. Note that at higher resolutions and in
the case of complicated environment or robot shape the
process of obtaining an explicit model for the configuration
space is quite time consuming.

V. NAVIGATION FUNCTION

As mentioned above, the task is to find a collision-free
path in the C-space between initial and target configurations.
The convergence can only be ensured if global information
about free and occupied areas are taken into account.
Similar to [1] and [5], we utilize a navigation function to
achieve this. A navigation function (NF) is a real-valued
function defined on the unoccupied part of the configuration
space Cfree = C \ Cops, Which has exactly one minimum,
namely at the goal configuration qg.

To define such a function, it is convenient to use the
discretized configuration space model (20). Starting from
qy; = f(qe), the NF values at every reachable q’ € Cyyee
are obtained by a wavefront propagation algorithm [2]. This
algorithm performs a breadth-first-like numerical search and
labels the grid points with ascending function values starting
from NF(qf;) = 0.

For the situation depicted in Fig. 2, a cross section of
the discrete navigation function at ¢ = ¢¢g is shown in
Fig. 3. The black area represents occupied configurations
and the “x” mark shows the goal configuration, where the
wavefront propagation was started. Greater function values
are represented by lighter colors.

At this point, NF values have been assigned to grid points.
As any configuration q € Cyc. is allowed for the robot,
NF values in all these points should be determined. We use
trilinear interpolation between grid points. It has the con-
venient property of having no local minima if neighboring
points do not have equal values, which is ensured by the
wavefront propagation algorithm.

X

Fig. 3: Cross-section of NF(q’) at ¢ = pg

VI. MODEL PREDICTIVE NAVIGATION ALGORITHM

The obstacle avoidance problem is considered as a con-
strained optimization problem over the control space of the
robot, similar to (1). The objective function which has to
be minimized is the navigation function itself, constructed
as described in Section V.

A control u(-) has to be determined at every time instant
t which minimizes the NF value at the end of a time
horizon [t,t + T:

u(-) = arg(g)ﬂn NF (q(t+ 1))

(23)

where (¢t + T') can be derived from the motion equation.
At ¢ the control u(t) has to be applied to the robot model.
Safety is ensured by a constraint of admissible controls. A
control u(-) is admissible, if

a(7) & Cobs,
Vr et t +TIUt+ Tt + T+ Tyrake)

(24)

We assume that a maximal braking control u*(+) is applied
in the time interval [t + T, t + T + Tprake] Where Tprake iS
the time needed to halt the robot from the velocity at ¢+ 7.
This means that only those controls are admissible that do
not cause a collision inside the horizon and allow the robot
to stop safely beyond the horizon.

We use variable horizon length, where T" depends on the
current velocity. It is chosen to 7' > Tjp.qke in order to
ensure the possibility of stopping inside the horizon. This
allows a smooth halt at the target. In contrast with that, a
too short horizon would cause an “overshoot” or oscillation
while approaching the target.

During the optimization process we have to choose a
control value at every discrete time instant that satisfies (24)
and velocity and force constraints, while minimizing (23).
To do this, the control space is also quantized, which results
in a countable set of wheel forces. The dynamic window is
the set of all possible discrete wheel force configurations.
We take each admissible control value from the dynamic
window and calculate its effect to the robot model for the
duration of T' = hTs, h € N using (8) or (17). The control
resulting in the smallest NF value at ¢+ hT will be chosen
and applied to the robot model in the time interval [¢, t+75].

LR
&Y

Fig. 5: Differential drive reaching the target position while
omitting the desired orientation

VII. APPLICATION TO DIFFERENT ROBOT MODELS

The method has been tested in simulations for both
presented robot models. The trajectory of a rectangle-shaped
robot having three omnidirectional wheels is depicted in
Fig. 4. It can be seen that the narrow crossing caused no
problem and the target position and orientation (see Fig. 2)
have been reached successfully.

In Fig. 5 a robot model with differential drive is depicted.
In this case the navigation function is modified in order
to let it be independent of orientation. This means that
NF(z,y,¢) = NF(z,y), for every ¢. In other words, only
the target position is prescribed without orientation. As it
can be seen, the goal position is reached, while omitting the
target orientation. However, since a robot with differential
drive is able to turn in one place, the process can be divided
into two stages. At first the robot travels to the target
position and after that it is commanded to turn to the desired
orientation. This can be done under the assumption that the
target position is given such that obstacles are not closer
than the robot collision radius.

Note that this method causes the robot to graze the
obstacles (similar to other planning methods that look for
shortest paths). This can be seen e.g. in Fig. 4. However,
this inconvenience can be avoided by virtually dilating the
obstacles by a “safe zone”.

VIII. CONCLUSIONS AND FUTURE WORK

A dynamic window-based navigation approach was pre-
sented for polygonal robots having omnidirectional or dif-
ferential drive. The method utilizes the idea of model pre-
dictive control and a navigation function serves as optimiza-
tion objective, defined on the configuration space. Dynamics
of the robot is taken into account by a dynamic model, using
wheel traction forces as actuating variables. The method
works fine for holonomic robots, and also can be applied
to robots with constrained kinematics under the assumption
that turning is possible at the target position. Further effort
has to be taken in order to eliminate this limitation regarding
robot models having differential constraints. Future work
includes also improvements on the calculation of the naviga-
tion function. The wave propagation algorithm in the current
form is quite time-consuming for wider working areas and
higher grid resolutions. If the NF computation could be
accelerated, the presented planning algorithm would also
be applicable in changing environments.

ACKNOWLEDGMENTS

The work in the paper has been developed in the frame-
work of the project “Talent care and cultivation in the
scientific workshops of BME”. This project is supported
by the grant TAMOP - 4.2.2.B-10/1-2010-0009

REFERENCES

[1] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, pp. 23-33,
1997.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[3] O. Khatib, “Real-time obstacle avoidance for robot manipulator and
mobile robots,” The International Journal of Robotics Research,
vol. 5, pp. 90-98, 1986.

[4] J.Borenstein and Y. Koren, “The vector field histogram - fast obstacle
avoidance for mobile robots,” IEEE Trans. Robot. Autom., vol. 7, pp.
278-288, 1991.

[5] O. Brock and O. Khatib, “High-speed navigation using the global

dynamic window approach,” in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, Detroit, MI, 1999,

pp. 341-346.

P. Ogren and N. Leonard, “A convergent dynamic window approach

to obstacle avoidance,” IEEE Trans. Robot., vol. 21, pp. 188-195,

2005.

[7]1 H. Berti, A. Sappa, and O. Agamennoni, “Improved dynamic window

approach by using Lyapunov stability criteria,” Latin American

Applied Research, vol. 38, pp. 289-298, 2008.

C. Schegel, “Fast local obstacle avoidance under kinematic and

dynamic constraints for a mobile robot,” in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, Victoria, B.C., Canada, 1998, pp. 594-599.

[9] K. Arras, J. Persson, N. Tomatis, and R. Siegwart, “Real-time
obstacle avoidance for polygonal robots with a reduced dynamic
window,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Washington, DC, 2002, pp. 3050-3055.

[10] J. Minguez and L. Montano, “Extending collision avoidance methods
to consider the vehicle shape, kinematics, and dynamics of a mobile
robot,” IEEE Trans. Robot., vol. 25, pp. 367-381, 2009.

[11] D. Kiss and G. Tevesz, “A receding horizon control approach to navi-
gation in virtual corridors,” in Applied Computational Intelligence in
Engineering and Information Technology, ser. Topics in Intelligent
Engineering and Informatics. Springer-Verlag, 2012, vol. 1, pp.
175-186.

[12] R. Rojas and A. Forster, “Holonomic control of a robot with an
omnidirectional drive,” Kiinstliche Intelligenz, vol. 11, pp. 12-17,
2006.

[13] M. Keil and J. Snoeyink, “On the time bound for convex decompo-
sition of simple polygons,” International Journal of Computational
Geometry and Applications, vol. 12, pp. 181-192, 2002.

[6

—_

[8

[l

